If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-13x^2+768x+4608=0
a = -13; b = 768; c = +4608;
Δ = b2-4ac
Δ = 7682-4·(-13)·4608
Δ = 829440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{829440}=\sqrt{82944*10}=\sqrt{82944}*\sqrt{10}=288\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(768)-288\sqrt{10}}{2*-13}=\frac{-768-288\sqrt{10}}{-26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(768)+288\sqrt{10}}{2*-13}=\frac{-768+288\sqrt{10}}{-26} $
| 87c+2=31 | | 0.5x-0.3=0.3 | | -3/7x+11=2 | | 26c+4=-48 | | 5=16+k | | 16k-7=137 | | 4(5=2x)-5=3(3x=7) | | 3-6x=-11 | | T=20+96t-9.8t^2 | | -6-x=-6 | | 5z+3=21-2 | | 6*x+12=40 | | 5x+18=11x+34 | | -2n-4=24 | | 13k+-17k—5=13 | | 3(x)-(90-x)=46 | | 5a-4a+3=17 | | 6x-3x-2=19 | | x+89=x+99 | | 3=s-12/2 | | 5x+1=13x+17 | | 15-p=2 | | 16x+6=27x+2 | | 13.6=2r—7 | | 9x-10=4x+80 | | -10(-4x+7)=130 | | 11+6x=2x-4 | | 9k2-21k+10=0 | | Y-7=-5(x-2) | | v/24-4=5 | | 9=u/2 | | 29+30p=509 |